A numerical model simulating reactive transport and evolution of fracture permeability
نویسندگان
چکیده
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free-face dissolution/precipitation; pressure (dis)solution and precipitation effect net-reduction in aperture and free-face dissolution effects netincrease. These processes are incorporated to examine coupled thermo-hydro-mechano-chemo responses during a flow-through experiment, and applied to reckon the effect of forced fluid injection within rock fractures at geothermal and petroleum sites. The model accommodates advection-dominant transport systems by employing the Lagrangian–Eulerian method. This enables changes in aperture and solute concentration within a fracture to be followed with time for arbitrary driving effective stresses, fluid and rock temperatures, and fluid flow rates. This allows a systematic evaluation of evolving linked mechanical and chemical processes. Changes in fracture aperture and solute concentration tracked within a wellconstrained flow-through test completed on a natural fracture in novaculite (Earth Planet. Sci. Lett. 2006, in press) are compared with the distributed parameter model. These results show relatively good agreement, excepting an enigmatic abrupt reduction in fracture aperture in the early experimental period, suggesting that other mechanisms such as mechanical creep and clogging induced by unanticipated local precipitation need to be quantified and incorporated. The model is applied to examine the evolution in fracture permeability for different inlet conditions, including localized (rather than distributed) injection. Predictions show the evolution of preferential flow paths driven by dissolution, and also define the sense of permeability evolution at field scale. Copyright # 2006 John Wiley & Sons, Ltd.
منابع مشابه
Coupled Geomechanical and Reactive Geochemical Simulations for Fluid and Heat Flow in Enhanced Geothermal Reservoirs
A major concern in development of fractured reservoirs in Enhanced Geothermal Systems (EGS) is to achieve and maintain adequate injectivity, while avoiding short-circuiting flow paths. The injection performance and flow paths are dominated by fracture rock permeability. The evolution of fracture permeability can be made by change in temperature or pressure induced rock deformation and geochemic...
متن کاملTransport of conservative solutes in simulated fracture networks: 1. Synthetic data generation
[1] This paper investigates whether particle ensembles in a fractured rock domain may be adequately modeled as an operator-stable plume. If this statistical model applies to transport in fractured media, then an ensemble plume in a fractured rock domain may be modeled using the novel Fokker-Planck evolution equation of the operator-stable plume. These plumes (which include the classical multi-G...
متن کاملMODELLING OF THE PERMEABILITY FOR COLUMNAR DENDRITE STRUCTURES DURING SOLIDIFICATION OF MUSHY ALLOYS
A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth. The model is inclusive two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the interdendritic liquid permeability. Simulation results shown which solute concentration by evolution of dendrite shape could resu...
متن کاملFracture Permeability Alteration due to Chemical and Mechanical Processes: A Coupled High-Resolution Model
Reactive fluid-flow experiments in fractures subjected to normal stress suggest the potential for either increased or decreased permeability resulting from fracture-surface dissolution. We present a computational model that couples mechanical deformation and chemical alteration of fractures subjected to constant normal stress and reactive fluid flow. The model explicitly represents micro-scale ...
متن کاملA Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs
More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...
متن کامل